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Reading, Writing and Displaying Images 

Machines see and process everything using numbers, including images and text. How 
do you convert images to numbers – I can hear you wondering. Two words – pixel 
values: 

 

Every number represents the pixel intensity at that particular location. In the above 
image, I have shown the pixel values for a grayscale image where every pixel contains 
only one value i.e. the intensity of the black color at that location. 

Note that color images will have multiple values for a single pixel. These values 
represent the intensity of respective channels – Red, Green and Blue channels for RGB 
images, for instance. 

Reading and writing images is essential to any computer vision project. And the OpenCV 
library makes this function a whole lot easier. 

 

Now, let’s see how to import an image into our machine using OpenCV. Download the 
image from here. 

 

https://drive.google.com/open?id=1opqTM5_gRkhO3HQ9_KcBQ2KBppiy_xsL


 #import the libraries 

 import numpy as np 

 import matplotlib.pyplot as plt 

 import cv2 

 %matplotlib inline 

  

 #reading the image 

  

 image = cv2.imread('index.png') 

 image = cv2.cvtColor(image,cv2.COLOR_BGR2RGB) 

 #plotting the image 

 plt.imshow(image) 

  

 

 #saving image 

 cv2.imwrite('test_write.jpg',image) 



 

By default, the imread function reads images in the BGR (Blue-Green-Red) format. We 
can read images in different formats using extra flags in the imread function: 

● cv2.IMREAD_COLOR: Default flag for loading a color image 
● cv2.IMREAD_GRAYSCALE: Loads images in grayscale format 
● cv2.IMREAD_UNCHANGED: Loads images in their given format, including the 

alpha channel. Alpha channel stores the transparency information – the higher 
the value of alpha channel, the more opaque is the pixel 

  

Changing Color Spaces 

A color space is a protocol for representing colors in a way that makes them easily 
reproducible. We know that grayscale images have single pixel values and color images 
contain 3 values for each pixel – the intensities of the Red, Green and Blue channels. 

Most computer vision use cases process images in RGB format. However, applications 
like video compression and device independent storage – these are heavily dependent 
on other color spaces, like the Hue-Saturation-Value or HSV color space. 

As you understand a RGB image consists of the color intensity of different color 
channels, i.e. the intensity and color information are mixed in RGB color space but in 
HSV color space the color and intensity information are separated from each other. This 
makes HSV color space more robust to lighting changes. 

OpenCV reads a given image in the BGR format by default. So, you’ll need to change the 
color space of your image from BGR to RGB when reading images using OpenCV. Let’s 
see how to do that: 



 #import the required libraries 

 import numpy as np 

 import matplotlib.pyplot as plt 

 import cv2 

 %matplotlib inline 

 image = cv2.imread('index.jpg') 

 #converting image to Gray scale 

 gray_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) 

 #plotting the grayscale image 

 plt.imshow(gray_image) 

 #converting image to HSV format 

 hsv_image = cv2.cvtColor(image,cv2.COLOR_BGR2HSV) 

 #plotting the HSV image 

 plt.imshow(hsv_image) 

 



  

Resizing Images 

Machine learning models work with a fixed sized input. The same idea applies to 
computer vision models as well. The images we use for training our model must be of 
the same size. 

Now this might become problematic if we are creating our own dataset by scraping 
images from various sources. That’s where the function of resizing images comes to the 
fore. 

Images can be easily scaled up and down using OpenCV. This operation is useful for 
training deep learning models when we need to convert images to the model’s input 
shape. Different interpolation and downsampling methods are supported by OpenCV, 
which can be used by the following parameters: 

1. INTER_NEAREST: Nearest neighbor interpolation 
2. INTER_LINEAR: Bilinear interpolation 
3. INTER_AREA: Resampling using pixel area relation 
4. INTER_CUBIC: Bicubic interpolation over 4×4 pixel neighborhood 
5. INTER_LANCZOS4: Lanczos interpolation over 8×8 neighborhood 

OpenCV’s resize function uses bilinear interpolation by default. 

 import cv2 

 import numpy as np 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

 #reading the image 

 image = cv2.imread('index.jpg') 

 #converting image to size (100,100,3) 

 smaller_image = cv2.resize(image,(100,100),inerpolation='linear') 

https://scc.ustc.edu.cn/zlsc/sugon/intel/ipp/ipp_manual/IPPI/ippi_appendices/ippi_appB_LanczosInterpolation.htm


 #plot the resized image 

 plt.imshow(smaller_image) 

 

Image Rotation 

“You need a large amount of data to train a deep learning model”. I’m sure you must 
have comes across this line of thought in form or another. It’s partially true – most deep 
learning algorithms are heavily dependent on the quality and quantity of the data. 

But what if you do not have a large enough dataset? Not all of us can afford to manually 
collect and label images. 

Suppose we are building an image classification model for identifying the animal 
present in an image. So, both the images shown below should be classified as ‘dog’: 



 

  

  

 

  

But the model might find it difficult to classify the second image as a Dog if it was not 
trained on such images. So what should we do? 

Let me introduce you to the technique of data augmentation. This method allows us to 
generate more samples for training our deep learning model. Data augmentation uses 
the available data samples to produce the new ones, by applying image operations like 
rotation, scaling, translation, etc. This makes our model robust to changes in input and 
leads to better generalization. 

Rotation is one of the most used and easy to implement data augmentation techniques. 
As the name suggests, it involves rotating the image at an arbitrary angle and providing 
it the same label as the original image. Think of the times you have rotated images in 
your phone to achieve certain angles – that’s basically what this function does. 



 #importing the required libraries 

 import numpy as np 

 import cv2 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

 image = cv2.imread('index.png') 

 rows,cols = image.shape[:2] 

 #(col/2,rows/2) is the center of rotation for the image 

 # M is the cordinates of the center 

 M = cv2.getRotationMatrix2D((cols/2,rows/2),90,1) 

 dst = cv2.warpAffine(image,M,(cols,rows)) 

 plt.imshow(dst) 

 



Image Translation 

Image translation is a geometric transformation that maps the position of every object in 
the image to a new location in the final output image. After the translation operation, an 
object present at location (x,y) in the input image is shifted to a new position (X,Y): 

X = x + dx 

Y = y + dy 

Here, dx and dy are the respective translations along different dimensions. 

Image translation can be used to add shift invariance to the model, as by tranlation we 
can change the position of the object in the image give more variety to the model that 
leads to better generalizability which works in difficult conditions i.e. when the object is 
not perfectly aligned to the center of the image. 

This augmentation technique can also help the model correctly classify images with 
partially visible objects. Take the below image for example. Even when the complete 
shoe is not present in the image, the model should be able to classify it as a Shoe. 

 

 



This translation function is typically used in the image pre-processing stage. Check out 
the below code to see how it works in a practical scenario: 

 #importing the required libraries 

 import numpy as np 

 import cv2 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

 #reading the image 

 image = cv2.imread('index.png') 

 #shifting the image 100 pixels in both dimensions 

 M = np.float32([[1,0,-100],[0,1,-100]]) 

 dst = cv2.warpAffine(image,M,(cols,rows)) 

 plt.imshow(dst) 

 



Simple Image Thresholding 

Thresholding is an image segmentation method. It compares pixel values with a 
threshold value and updates it accordingly. OpenCV supports multiple variations of 
thresholding. A simple thresholding function can be defined like this: 

if Image(x,y) > threshold , Image(x,y) = 1 

otherswise, Image(x,y) = 0 

Thresholding can only be applied to grayscale images. 

A simple application of image thresholding could be dividing the image into it’s 
foreground and background. 

 #importing the required libraries 

 import numpy as np 

 import cv2 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

  

 

 #here 0 means that the image is loaded in gray scale format 

 gray_image = cv2.imread('index.png',0) 

  

 

 ret,thresh_binary = cv2.threshold(gray_image,127,255,cv2.THRESH_BINARY) 

 ret,thresh_binary_inv = 

cv2.threshold(gray_image,127,255,cv2.THRESH_BINARY_INV) 

https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html


 ret,thresh_trunc = cv2.threshold(gray_image,127,255,cv2.THRESH_TRUNC) 

 ret,thresh_tozero = cv2.threshold(gray_image,127,255,cv2.THRESH_TOZERO) 

 ret,thresh_tozero_inv = 

cv2.threshold(gray_image,127,255,cv2.THRESH_TOZERO_INV) 

  

 

 #DISPLAYING THE DIFFERENT THRESHOLDING STYLES 

 names = ['Oiriginal 

Image','BINARY','THRESH_BINARY_INV','THRESH_TRUNC','THRESH_TOZERO','THRESH_TO

ZERO_INV'] 

 images = 

gray_image,thresh_binary,thresh_binary_inv,thresh_trunc,thresh_tozero,thresh_

tozero_inv 

  

 

 for i in range(6): 

    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray') 

    plt.title(names[i]) 

    plt.xticks([]),plt.yticks([]) 

   

 plt.show() 



 

Adaptive Thresholding 

In case of adaptive thresholding, different threshold values are used for different parts of 
the image. This function gives better results for images with varying lighting conditions 
– hence the term “adaptive”. 

Otsu’s binarization method finds an optimal threshold value for the whole image. It 
works well for bimodal images (images with 2 peaks in their histogram). 

 #import the libraries 

 import numpy as np 

 import matplotlib.pyplot as plt 

 import cv2 

 %matplotlib inline 

  

 

 #ADAPTIVE THRESHOLDING 

 gray_image = cv2.imread('index.png',0) 

https://en.wikipedia.org/wiki/Otsu%27s_method


  

 

 ret,thresh_global = cv2.threshold(gray_image,127,255,cv2.THRESH_BINARY) 

 #here 11 is the pixel neighbourhood that is used to calculate the threshold 

value 

 thresh_mean = 

cv2.adaptiveThreshold(gray_image,255,cv2.ADAPTIVE_THRESH_MEAN_C,cv2.THRESH_BI

NARY,11,2) 

  

 

 thresh_gaussian = 

cv2.adaptiveThreshold(gray_image,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRES

H_BINARY,11,2) 

  

 

 names = ['Original Image','Global Thresholding','Adaptive Mean 

Threshold','Adaptive Gaussian Thresholding'] 

 images = [gray_image,thresh_global,thresh_mean,thresh_gaussian] 

  

 

 for i in range(4): 

    plt.subplot(2,2,i+1),plt.imshow(images[i],'gray') 

    plt.title(names[i]) 

    plt.xticks([]),plt.yticks([]) 



   

 plt.show() 

 

  

Image Segmentation (Watershed Algorithm) 

Image segmentation is the task of classifying every pixel in the image to some class. For 
example, classifying every pixel as foreground or background. Image segmentation is 
important for extracting the relevant parts from an image. 

The watershed algorithm is a classic image segmentation algorithm. It considers the 
pixel values in an image as topography. For finding the object boundaries, it takes initial 
markers as input. The algorithm then starts flooding the basin from the markers till the 
markers meet at the object boundaries. 

 



Image Source :- Mathworks 

Let’s say we have a topography with multiple basins. Now, if we fill different basins with 
water of different color, then the intersection of different colors will give us the object 
boundaries. This is the intuition behind the watershed algorithm. 

 #importing required libraries 

 import numpy as np 

 import cv2 

 import matplotlib.pyplot as plt 

  

 

 #reading the image 

 image = cv2.imread('coins.jpg') 

 #converting image to grayscale format 

 gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) 

 #apply thresholding 

 ret,thresh = 

cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) 

 #get a kernel 

 kernel = np.ones((3,3),np.uint8) 

 opening = cv2.morphologyEx(thresh,cv2.MORPH_OPEN,kernel,iterations = 2) 

 #extract the background from image 



 sure_bg = cv2.dilate(opening,kernel,iterations = 3) 

  

 

 dist_transform = cv2.distanceTransform(opening,cv2.DIST_L2,5) 

 ret,sure_fg = cv2.threshold(dist_transform,0.7*dist_transform.max(),255,0) 

  

 

 sure_fg = np.uint8(sure_fg) 

 unknown = cv2.subtract(sure_bg,sure_bg) 

  

 ret,markers = cv2.connectedComponents(sure_fg) 

  

 markers = markers+1 

  

 markers[unknown==255] = 0 

  

 markers = cv2.watershed(image,markers) 

 image[markers==-1] = [255,0,0] 

  

 

 plt.imshow(sure_fg) 



 

  

Bitwise Operations 

Bitwise operations include AND, OR, NOT and XOR. You might remember them from your 
programming class! In computer vision, these operations are very useful when we have a 
mask image and want to apply that mask over another image to extract the region of 
interest. 

 #import required libraries 

 import numpy as np 

 import matplotlib.pyplot as plt 

 import cv2 

 %matplotlib inline 

 #read the image 

 image = cv2.imread('coins.jpg') 

https://docs.opencv.org/3.4.0/d0/d86/tutorial_py_image_arithmetics.html


 #apply thresholdin 

 ret,mask = 

cv2.threshold(sure_fg,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) 

 #apply AND operation on image and mask generated by thrresholding 

 final = cv2.bitwise_and(image,image,mask = mask) 

 #plot the result 

 plt.imshow(final) 

 

In the above figure, we can see an input image and its segmentation mask calculated 
using the Watershed algorithm. Further, we have applied the bitwise ‘AND’ operation to 
remove the background from the image and extract relevant portions from the image. 
Pretty awesome stuff! 

  

Edge Detection 

Edges are the points in an image where the image brightness changes sharply or has 
discontinuities. Such discontinuities generally correspond to: 



● Discontinuities in depth 
● Discontinuities in surface orientation 
● Changes in material properties 
● Variations in scene illumination 

Edges are very useful features of an image that can be used for different applications 
like classification of objects in the image and localization. Even deep learning models 
calculate edge features to extract information about the objects present in image. 

Edges are different from contours as they are not related to objects rather they signify 
the changes in pixel values of an image. Edge detection can be used for image 
segmentation and even for image sharpening. 

 #import the required libraries 

 import numpy as np 

 import cv2 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

 #read the image 

 image = cv2.imread('coins.jpg') 

 #calculate the edges using Canny edge algorithm 

 edges = cv2.Canny(image,100,200) 

 #plot the edges 

 plt.imshow(edges) 



 

  

Image Filtering 

In image filtering, a pixel value is updated using its neighbouring values. But how are 
these values updated in the first place? 

Well, there are multiple ways of updating pixel values, such as selecting the maximum 
value from neighbours, using the average of neighbours, etc. Each method has it’s own 
uses. For example, averaging the pixel values in a neighbourhood is used for image 
blurring. 

 

Image Source:- Google 



Gaussian filtering is also used for image blurring that gives different weights to the 
neighbouring pixels based on their distance from the pixel under consideration. 

For image filtering, we use kernels. Kernels are matrices of numbers of different shapes 
like 3 x 3, 5 x 5, etc. A kernel is used to calculate the dot product with a part of the image. 
When calculating the new value of a pixel, the kernel center is overlapped with the pixel. 
The neighbouring pixel values are multiplied with the corresponding values in the kernel. 
The calculated value is assigned to the pixel coinciding with the center of the kernel. 

 #importing the required libraries 

 import numpy as np 

 import cv2 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

 image = cv2.imread('index.png') 

 #using the averaging kernel for image smoothening 

 averaging_kernel = np.ones((3,3),np.float32)/9 

 filtered_image = cv2.filter2D(image,-1,kernel) 

 plt.imshow(dst) 

 #get a one dimensional Gaussian Kernel 

 gaussian_kernel_x = cv2.getGaussianKernel(5,1) 

 gaussian_kernel_y = cv2.getGaussianKernel(5,1) 

 #converting to two dimensional kernel using matrix multiplication 

 gaussian_kernel = gaussian_kernel_x * gaussian_kernel_y.T 



 #you can also use cv2.GaussianBLurring(image,(shape of kernel),standard 

deviation) instead of cv2.filter2D 

 filtered_image = cv2.filter2D(image,-1,gaussian_kernel) 

 plt.imshow() 

 

In the above output, the image on the right shows the result of applying Gaussian kernels 
on an input image. We can see that the edges of the original image are suppressed. The 
Gaussian kernel with different values of sigma is used extensively to calculate the 
Difference of Gaussian for our image. This is an important step in the feature extraction 
process because it reduces the noise present in the image. 

  

Image Contours 

A contour is a closed curve of points or line segments that represents the boundaries of 
an object in the image. Contours are essentially the shapes of objects in an image. 

Unlike edges, contours are not part of an image. Instead, they are an abstract collection 
of points and line segments corresponding to the shapes of the object(s) in the image. 

We can use contours to count the number of objects in an image, categorize objects on 
the basis of their shapes, or select objects of particular shapes from the image. 



 #importing the required libraries 

 import numpy as np 

 import cv2 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

 image = cv2.imread('shapes.png') 

 #converting RGB image to Binary 

 gray_image = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) 

 ret,thresh = cv2.threshold(gray_image,127,255,0) 

 #calculate the contours from binary image 

 im,contours,hierarchy = 

cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) 

 with_contours = cv2.drawContours(image,contours,-1,(0,255,0),3) 

 plt.imshow(with_contours) 



 

Scale Invariant Feature Transform (SIFT) 

Keypoints is a concept you should be aware of when working with images. These are 
basically the points of interest in an image. Keypoints are analogous to the features of a 
given image. 

They are locations that define what is interesting in the image. Keypoints are important, 
because no matter how the image is modified (rotation, shrinking, expanding, distortion), 
we will always find the same keypoints for the image. 

Scale Invariant Feature Transform (SIFT) is a very popular keypoint detection algorithm. 
It consists of the following steps: 

● Scale-space extrema detection 
● Keypoint localization 
● Orientation assignment 
● Keypoint descriptor 
● Keypoint matching 

Features extracted from SIFT can be used for applications like image stitching, object 
detection, etc. The below code and output show the keypoints and their orientation 
calculated using SIFT. 

 #import required libraries 

 import cv2 



 import numpy as np 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

 #show OpenCV version 

 print(cv2.__version__) 

 #read the iamge and convert to grayscale 

 image = cv2.imread('index.png') 

 gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) 

 #create sift object 

 sift  = cv2.xfeatures2d.SIFT_create() 

 #calculate keypoints and their orientation 

 keypoints,descriptors = sift.detectAndCompute(gray,None) 

 #plot keypoints on the image 

 with_keypoints = cv2.drawKeypoints(gray,keypoints) 

 #plot the image 

 plt.imshow(with_keypoints) 



 

  

Speeded-Up Robust Features (SURF) 

Speeded-Up Robust Features (SURF) is an enhanced version of SIFT. It works much 
faster and is more robust to image transformations. In SIFT, the scale space is 
approximated using Laplacian of Gaussian. Wait – that sounds too complex. What is 
Laplacian of Gaussian? 

Laplacian is a kernel used for calculating the edges in an image. The Laplacian kernel 
works by approximating a second derivative of the image. Hence, it is very sensitive to 
noise. We generally apply the Gaussian kernel to the image before Laplacian kernel thus 
giving it the name Laplacian of Gaussian. 

In SURF, the Laplacian of Gaussian is calculated using a box filter (kernel). The 
convolution with box filter can be done in parallel for different scales which is the 
underlying reason for the enhanced speed of SURF (compared to SIFT). There are other 
neat improvements like this in SURF – I suggest going through the research paper to 
understand this in-depth. 

 #import required libraries 

 import cv2 

 import numpy as np 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

https://en.wikipedia.org/wiki/Scale_space
https://www.vision.ee.ethz.ch/~surf/eccv06.pdf


 #show OpenCV version 

 print(cv2.__version__) 

 #read image and convert to grayscale 

 image = cv2.imread('index.png') 

 gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY) 

 #instantiate surf object 

 surf  = cv2.xfeatures2d.SURF_create(400) 

 #calculate keypoints and their orientation 

 keypoints,descriptors = surf.detectAndCompute(gray,None) 

  

 

 with_keypoints = cv2.drawKeypoints(gray,keypoints) 

  

 

 plt.imshow(with_keypoints) 

 



  

Feature Matching 

The features extracted from different images using SIFT or SURF can be matched to find 
similar objects/patterns present in different images. The OpenCV library supports 
multiple feature-matching algorithms, like brute force matching, knn feature matching, 
among others. 

 import numpy as np 

 import cv2 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

  

 

 #reading images in grayscale format 

 image1 = cv2.imread('messi.jpg',0) 

 image2 = cv2.imread('team.jpg',0) 

  

 

 #finding out the keypoints and their descriptors 

 keypoints1,descriptors1 = cv2.detectAndCompute(image1,None) 

 keypoints2,descriptors2 = cv2.detectAndCompute(image2,None) 

  

 



 #matching the descriptors from both the images 

 bf = cv2.BFMatcher() 

 matches = bf.knnMatch(ds1,ds2,k = 2) 

  

 

  

 

 #selecting only the good features 

 good_matches = [] 

 for m,n in matches: 

    if m.distance < 0.75*n.distance: 

        good.append([m]) 

  

 

 image3 = cv2.drawMatchesKnn(image1,kp1,image2,kp2,good,flags = 2) 



 

In the above image, we can see that the keypoints extracted from the original image (on 
the left) are matched to keypoints of its rotated version. This is because the features 
were extracted using SIFT, which is invariant to such transformations. 

  

Face Detection 

OpenCV supports haar cascade based object detection. Haar cascades are machine 
learning based classifiers that calculate different features like edges, lines, etc in the 
image. Then, these classifiers train using multiple positive and negative samples. 

Trained classifiers for different objects like faces,eyes etc are available in the OpenCV 
Github repo , you can also train your own haar cascade for any object. 

Make sure you go through the below excellent article that teaches you how to build a 
face detection model from video using OpenCV: 

● Building a Face Detection Model from Video using Deep Learning (OpenCV 
Implementation) 

And if you’re looking to learn the face detection concept from scratch, then this article 
should be of interest. 

https://www.analyticsvidhya.com/blog/2018/12/introduction-face-detection-video-deep-learning-python/
https://www.analyticsvidhya.com/blog/2018/12/introduction-face-detection-video-deep-learning-python/
https://www.analyticsvidhya.com/blog/2018/08/a-simple-introduction-to-facial-recognition-with-python-codes/


 #import required libraries 

 import numpy as np 

 import cv2 as cv 

 import matplotlib.pyplot as plt 

 %matplotlib inline 

  

 

 #load the classifiers downloaded 

 face_cascade = cv.CascadeClassifier('haarcascade_frontalface_default.xml') 

 eye_cascade = cv.CascadeClassifier('haarcascade_eye.xml') 

 #read the image and convert to grayscale format 

 img = cv.imread('rotated_face.jpg') 

 gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) 

 #calculate coordinates 

 faces = face_cascade.detectMultiScale(gray, 1.1, 4) 

 for (x,y,w,h) in faces: 

    cv.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) 

    roi_gray = gray[y:y+h, x:x+w] 

    roi_color = img[y:y+h, x:x+w] 



    eyes = eye_cascade.detectMultiScale(roi_gray) 

    #draw bounding boxes around detected features 

    for (ex,ey,ew,eh) in eyes: 

        cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) 

 #plot the image 

 plt.imshow(img) 

 #write image 

 cv2.imwrite('face_detection.jpg',img) 

 

  

End Notes 

OpenCV is truly an all emcompassing library for computer vision tasks. I hope you tried 
out all the above codes on your machine – the best way to learn computer vision is by 
applying it on your own. I encourage you to build your own applications and experiment 
with OpenCV as much as you can. 

 


