
 

 

D.R.D.O. SASE’s UAV Fleet Challenge      
 Mid-Term Evaluation Report, IIT Kharagpur 

Indian Institute of Technology, Kharagpur                                                                                                                                                                                                                                              1  

Introduction 
Unmanned Aerial Vehicles (UAVs) have a high potential to support search tasks in unstructured environments. Small, lightweight, agile 

UAVs, such as multirotor platforms, can incorporate many kinds of sensors that are suitable for detecting the objects of interest in cluttered 

outdoor areas. However, due to their limited endurance, moderate computing power, and imperfect sensing, mini-UAVs should work in 

groups using swarm coordination algorithms to perform tasks in a scalable, reliable and robust manner. 

The solution was developed, keeping in mind two crucial factors: time and cost while obtaining the most accurate results. A highly 

scalable and intuitive solution was developed, which inherits a lot from how humans understand a scene. The drones map probable 

regions of interest and then plan their paths accordingly. The complete strategy has been designed to prevent any communication loss 

between the UAV’s in the swarm, thus ensuring the uninterrupted transfer of information. The backbone of this solution is our robust 

search and detection algorithm as well as a simplistic hardware design, which optimises cost, ensures proper sensor positions, and has 

additional safety features like shock-absorbing structure. 
 

Design Approach for UAVs 
Various parameters, such as economic feasibility, maximum stability, and 

high power to weight ratio, have been taken into consideration while 

designing the UAV for optimum performance. In an outdoor environment, 

it is of utmost priority to stabilize the drone against the strong winds. The 

stability of the multirotor increases with an increase in size. However, it is 

accompanied by a steep increase in the cost of compatible accessories. 
 

The frame size of 500mm has been selected to have the right balance 

between cost and functionality. The 10-inch diameter, 4.5-inch pitch 

propellers, and EMAX MT2216 810KV motors have been used to gain a 

thrust to weight ratio of 2. The flight time for this configuration with a 

take-off weight of 2.3 kg and 4S 8000mAh battery was calculated to be 

nearly 19 minutes, which is an optimum balance between the flight time 

and cost of batteries up to the capacity of 12000mAh. 

 

Since the arena is small, pinpointing the precise locations of the target boxes has been achieved using a high-precision GPS module. 

For accurate and real-time detection algorithms, we needed an on-board processor to perform heavy computation. The most economical 

solution, was Odroid XU4, with an ARM Cortex-A15 quad-core processor running at 2.0 GHz and Cortex-A7 quad-core CPUs with a 2GB 

DDR3 RAM. The camera used is SJ4000 with a field of view of 170 degrees and resolution of 1280 x 720 pixels at 30 frames per second, 

to achieve wide range in much lesser height and fast data collection, without compromising on the quality. Also, flying at a lower height 

minimises the effect of environmental factors such as wind and fog.  
 

The flight controller used is Pixhawk 2.4.8 flashed with Ardupilot firmware stack which has been experimentally determined to be more 

robust than other available firmware. Considering the economic feasibility of the solution, the estimated cost of each drone was only      

INR 46k which is far less than that of any commercially available drone with the same specifications. Since this drone is self-assembled, 

in case of any damage to its parts, the user can easily replace the part, which would decrease its cost and increase its reliability in the 

long run. The final components specification is as follows: 
 

 

 
 

 
 
 
 
 
 

 

Frame Size 500mm 

Battery 8000 mAh 4S 

Calculated Weight 2300 gm 

GPS HERE 2 

Flight Controller Pixhawk 2.4.8 

Motors EMAX MT2216 810KV 

ESC EMAX SIMON K 30A 

Transmitter FlySky FS-i6X 

Receiver FlySky FS-iA6B 

Processor Odroid XU4 

Camera SJ4000 

Propeller Size 1045 

Wi-Fi Adapter 802.11/b/g/n/ac compatible 

Fig.1 Comparison of 4S Batteries 

Fig. 2 Hardware Setup 
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Swarm Communication 
 

Search and rescue drones need to work in conditions where they can remain detached from ground 

stations and still be able to communicate with the peer drones to coordinate and collaborate. 

A decentralized communication system allows the drones to communicate with each other, even 

in the absence of a centralized communication backbone. This has been realized using Ad-

hoc wireless communication, which is based on a peer-to-peer connection. It is established and 

maintained without the need of any intermediate and supervising router or server. 
 

In missions like these, all drones must be able to exchange real-time information reliably via a 

resilient communication system that allows them to connect indirectly to distant drones that are 

beyond the direct signal reach, leveraging other drones in the vicinity. This is achieved by using 

dynamic routing protocols that are installed on all the drones to provide indirect communication 

links and dynamic routing information. Over this mesh network, the drones will keep broadcasting status messages that allow them to 

coordinate their activities. This is done by running an application on each drone that broadcasts the local status and fetches the status 

information of other drones. 
 

Implementation and Working 
 

a. Ad-Hoc communication 
Each drone houses an Odroid with a wireless adapter setup in Wi-Fi Ad-Hoc mode. 

The wireless interfaces are then assigned the same Wireless channel, Broadcast 

SSIDs and subnet mask. The IP addresses are then assigned under the same subnet. 

Having the same wireless channel is an essential requirement. This can be identified 

by the Cell-IDs assumed by the interfaces. The Cell-ID acts as a unique identifier for 

the combined network. Once all the drones are inside the same cell, they can 

communicate with each other. 
 

b. Dynamic Routing using Optimal Link State Routing (OLSR)# 
 

OLSR is a routing protocol specifically intended for Mobile Ad-Hoc Networks (MANETs). It allows 

us to create a mesh topology of drones within the ad-hoc network and provides deterministic 

routing information. The protocol is an optimization of the classical link state algorithm tailored to 

the requirements of a mobile wireless LAN. Once a network interface is initiated into OLSR routing, 

it can discover other OLSR enabled nodes that are present in the Ad-Hoc network.  

In OLSR, link-state information (topology control) is generated only by nodes elected as multi-point 

relays (MPRs). At any given time, OLSR sticks to a specific topological structure, which is updated 

dynamically with time by the topology control as the drones keep moving. This updating of topology 

is only possible due to topology control of OLSR. There are other link-state routing protocols like 

OSPF and BATMAN. However, OLSR gains preference because it prevents wireless network 

flooding by using the optimal amount of topology control messages, and it is tailor-made considering 

the mobile nature of the network. 
 

c. Application Level Communication 
We need an application-level communication to allow applications  

on different drones to communicate. Decentralizing the ownership  

of the topics by having a master on each drone ensures that the 

topics are shared even when the ‘central’ drone becomes 

unavailable, and also reduces latency between the local 

applications. But ROS does not naturally support multiple masters 

so, we employ external methods to facilitate the exchange of 

contents published under the topics of different masters. ROS  

multi-master-fkie* is a readily available package that bridges the 

topics published under multiple masters. Using this package is 

more preferred as compared to the primitive method of creating 

direct UDP sockets, mainly due to the ease of implementation and 

scalability. 

Specifications and performance 
1. Wireless adapter specifications: generic adapter with 

802.11b/g/n/ac support 
2. Line-of-sight data rate (upto 100 metres) minimum (30kB/s) and 

upto 2MB/s 

3. Latency - worst case 100 ms (nominally 15 ms) 
 

 *ROS: Multimaster-fkie [ http://wiki.ros.org/multimaster_fkie ]                                                        
#RFC 3626, OLSR Protocol [ https://tools.ietf.org/html/rfc3626 ] 

Fig. 3 Swarm feature stack 

Fig. 4 Comparison between infrastructure and ad-hoc 

Fig. 5 OLSR Network 

Fig. 6 ROS multi-master working with respect to Drone 1 

 

http://wiki.ros.org/multimaster_fkie
https://tools.ietf.org/html/rfc3626
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Strategy and Planning 
 

Search strategy plays a vital role in effective search of target positions. A 

simulation world was setup using ROS Gazebo and various strategies like 

Random walks, Information gain-based approach, pre-determined waypoints 

were tried and tested to determine the best approach for the given scenario. 

Following conclusions were made: 

1. Random walks, though asymptotically complete, lead to many ineffective 

searches as they can closely pass from a nearby target position without 

detecting it. Besides, it leads to a lot of overlapping coverage. Its operation 

can only be justified in completely unknown environments and thus 

theoretically eliminated due to its inefficiencies in a constrained environment. 

2. Information gain-based strategies are generally used for exploration in 

environments which are rich in features and the waypoints are generated in 

areas where the maximum amount of information may be inferred. Thus, the 

use of this strategy was inappropriate for the given scenario due to low 

availability of features in an open environment and high computation costs. 

3. Different methods for the pre-determined waypoint approach were tried. 

Initially, trial runs were conducted wherein each of the UAV would be 

assigned a rectangular strip with a pre-determined U shaped trajectory (fig 

8). The search time in this approach was highly dependent on the spawn 

location of the UAVs. This led to the idea of dividing the arena into four 

quadrants wherein each of the drones would be assigned an individual 

quadrant for search (fig 9). This was inefficient since the UAV was forced to 

search the entire quadrant from a lower height and hence increasing the search time. 
 

After conducting multiple simulations, we came up with a combination of Region of Interest (ROI) & quadrant based strategy which 

was an intermediate solution that would justify the present problem statement and would also work in any general scenario. The proposed 

strategy is described below. 
 

 

Allocation of Search Initiation Position (SIP) 
 

The arena has been divided into 4 equal quadrants. Each drone is assigned one of the 4 quadrants for the detection of the target. We 

have defined 4 possible SIPs for commencing the detection process in each of the quadrants. Each drone from the spawning position 

(takeoff point) travels to the closest of these 4 SIPs, while autonomously taking off in order of decreasing distance to the closest SIP, to 

avoid chances of a collision. The possible spawning points are: 

1. Outside the arena       2.   Inner sub-quadrants      3.    Outer sub-quadrants 

      Fig. 10 Strategy for traversal to SIP for different spawn locations to avoid collision 
 

Efficient detection of probable target positions 

1. Upon reaching the respective SIP, the drone ascends to a height enough 

to have the field of view to cover the entire width of the quadrant. Next, 

they move towards the opposite side, scanning the arena for the 

presence of the target. 

2. By virtue of the scanning height drones, the image stream obtained does 

not have any features of the grass. The only source of image gradients 

is cluttered objects and our targets. To make our approach even more 

robust and to suppress any remaining features of the grass, we apply 

various morphological transformations on the image. 

3. Spatial filtering and canny edge detection are used for feature 

extraction. 

New frame

Morphological 
transformations

Spatial filtering

Canny Edge 
Detection

Target 
localisation

Confidence score 
calculation

     Fig. 9 Fig. 8 

Fig. 7 Simulation World Setup 
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4. The last section of our algorithm deals with localising the targets based on the features extracted. For this, the contour detection 

algorithm is used, which clusters these features into sets of continuous points which could only be interpreted as probable targets. 

5. The algorithm is re-iterated for several frames. It assigns a confidence score to targets based on its shape colour and other 

properties. For decreasing false positives, targets below a certain threshold are not considered during path planning. 

 

 

 

 

 

 

 

 

 

Multi-Goal Path Planner   
Once the drone has identified all the probable target positions, it 

computes a near-optimal path starting from its current position to 

traverse all the probable target positions only once. This is the 

minimum Hamiltonian path problem#. It falls under the 

category of NP-hard problems, and there exists no polynomial-

time algorithm for this. Our algorithm looks for an approximate 

result for the problem involving the techniques observed in the 

Kruskal Algorithm. The time complexity of this algorithm is 

O(N2log N), where N is total number of probable target positions. 
 

Algorithmic flow of Strategy and Planning:  
1. Each drone starts moving from the spawn point to their 

individually calculated SIPs in each quadrant. Next, the 

drones move towards the opposite side to scan the quadrant. 

2. This process develops a feature map to locate the probable 

targets. If the number of probable targets falls short of a 

certain threshold, the drone is set into recovery mode1.  

3. Otherwise, an optimised multi-goal path is planned through 

probable target positions, eliminating previously identified 

targets.  

4. This path is implemented for searching at a lower height. 

Each target is explored and verified using detection algorithm. 

The targets with confidence lesser than the lower threshold 

are identified as false positives, and those with confidence 

higher than the upper threshold are identified as true 

positives.  

5. Each drone broadcasts its progress using swarm 

communication and also keeps track of the overall progress. 

6. If the number of true positives identified by all the drones 

combined becomes equal to the defined number of search 

targets (NT), the drone terminates the detection process and 

lands; else it moves to verify the next probable target. If the 

iteration ends with number of true positive examples less than 

NT, then all drones go into recovery mode2. 
 

Recovery Mode: 
1. If a particular drone enters recovery mode due to shortage of probable targets, then the scanning process is conducted at half of the 

previous scanning height, whereas the search height is preserved for the drone. 

2. If the number of true positives is less than NT, then all drones starts scanning at half of the previous scanning height. 
 

In the event that the scanning height gets reduced below a threshold value or the battery level falls to a critical point, the drone terminates 

the detection process and lands. 

Fig. 12 Flow Diagram for Strategy and Planning 

Fig. 11(a) Green box can be seen in 

the image(arrow pointed) 
Fig. 11(b) Feature Map Fig. 11(c) Planned Path along 

probable target positions 

# Rubin, Frank (1974), "A Search Procedure for Hamilton Paths and Circuits", Journal of the ACM, 21 (4): 576–80, doi:10.1145/321850.321854 
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There are 2 parameters to be controlled in this stage that are several clusters(L) in step 1 of KNN and the number of parameters(M) in the 

second step. Now that our colour space for the entire image has been reduced to L, we form binary images for each of the L different colours. 

In this binary image, we apply some dilations and erosions to get cleaner image. This process gives us M binary images. 

The preprocessing step removes unnecessary objects in the image based on 

their saturation and hue value. Through this, we can remove the clutters 

present in the environment (the objects which are not the background, neither 

the target object) like the chair, tables as mentioned in the problem statement. 

Through this, we can obtain a mask of the image consisting of the background 

and target box. However, it might still contain some random objects that follow 

the same colour distribution as the target or background. 

Fig. 13(c) Colour Space 

Reduced 

In the final part of our algorithm, we find contours in all of the M 

different binary images. These contours are then replaced by an 

approximate contour that has an arc length of some (1+ε) times 

original. At this point, we reject all approximate contours that do not 

have exactly 4 points. Next, we apply specific thresholding criterion 

to filter out noisy contours such as the ratio of area to original contour, 

the ratio of diagonals, minimum and maximum contour area. If any 

contour passes all of these tests, we declare it our intended object. 

* TF-ROS               #KNN Model-Based Approach in Classification 

Input Image
Hue and 

Saturation 
Thresholding

KNN Colour 
Space 

Reduction

Contour 
Approximation

Global 
Position 

Estimation

Now, having obtained the relative position of the object in the image 

frame, the position could be found out in the real world using the pin-

hole model and the height, which can be estimated using the 

barometer/rangefinder. Thus, we can know the relative position of 

the target with respect to the current position of the quadcopter. 

The second part of the algorithm for detection has three major steps. Broadly, 

these are: reduction of colour space, conversion to a binary image, and finally, 

detection and classification of contours. The first stage, reduction of colour space, 

works by applying K-Nearest Neighbours(KNN)# across the image’s pixels. 

Instead of applying KNN to find the most precise colour space at once, we first 

split the images into a smaller 5x5 grid and apply KNN to each of these grids 

independently. 

 Because KNN is an O(N2) algorithm, this gives us a massive speed improvement. Finally, we take this composite 

image and apply KNN to it entirely. This step now proceeds faster than a usual KNN because the error is already 

very low, and the threshold error value is obtained very quickly.  

 

Fig. 13(a) Input Image 

Fig. 13(b) Thresholded 

Image 

Output Image 

The algorithm for the detection of the green box is a three-fold process. The first part of the algorithm deals with 

the preprocessing of images; the second part is getting a mask for the target object. The last part of the algorithm 

deals with a post-processing step through which we can extract out the rectangle from the mask of the image. 

Here we are showing the algorithm used to extract the possible masks and approximations done to fit the required 

specifications. Finally, we are getting the local position of the target using the required transformations. 

The example shown to the right is a cropped image of the actual video shot using a 1080x720-resolution camera 

from a height of 7 meters. We further tested our algorithm from various heights, including 2m, 5m, 7m, and 10m. 

Target Detection and Localisation 

Fig. 13(d) Output Image 

Having obtained the GPS location of the drone, the tf-ROS* package is used to transform the 

target position from the local frame to the world frame. The swarm of drones continuously publish 

coordinates of all the newly detected objects. A subscriber is created using roslibjs, which is 

the core JavaScript library for interacting with ROS from the browser. This subscriber listens to 

these GPS coordinates and then updates them in a stack. This stack is employed by the 

mapping script, which uses the OpenLayers API to output a geographical map of the field onto 

the browser with the detected coordinates tagged. Using the above system, we obtain the 

position of the detected object in real-time on the ground station. 
 

Thus, using the above proposed hardware setup and algorithms we will be able to efficiently 

solve the given problem statement and the approach can be easily extended to other generalised 

use cases such as exploration, and search-rescue missions. 

 

 

 

Fig. 15 Geo-tagged points displayed 

Fig. 14 Pin-Hole Model  

http://wiki.ros.org/tf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.815&rep=rep1&type=pdf

